Extensions 1→N→G→Q→1 with N=C22 and Q=C4×C7⋊C3

Direct product G=N×Q with N=C22 and Q=C4×C7⋊C3
dρLabelID
C22×C4×C7⋊C3112C2^2xC4xC7:C3336,164

Semidirect products G=N:Q with N=C22 and Q=C4×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×C7⋊C3) = C4×C7⋊A4φ: C4×C7⋊C3/C28C3 ⊆ Aut C22843C2^2:(C4xC7:C3)336,171
C222(C4×C7⋊C3) = C22⋊C4×C7⋊C3φ: C4×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C2256C2^2:2(C4xC7:C3)336,49

Non-split extensions G=N.Q with N=C22 and Q=C4×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C22.(C4×C7⋊C3) = M4(2)×C7⋊C3φ: C4×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C22566C2^2.(C4xC7:C3)336,52
C22.2(C4×C7⋊C3) = C2×C8×C7⋊C3central extension (φ=1)112C2^2.2(C4xC7:C3)336,51

׿
×
𝔽